СРЕДСТВА АНАЛИЗА И ОПТИМИЗАЦИИ ЛОКАЛЬНЫХ СЕТЕЙ

       

Методы аналитического, имитационного и натурного моделирования


Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т.п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.


Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т.д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т.п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования. Подобные системы для вычислительных сетей рассматриваются ниже в разделе 4.3.


Содержание раздела